Numerical Radius Inequalities for Several Operators

Authors

  • Omar Hirzallah
  • Fuad Kittaneh

DOI:

https://doi.org/10.7146/math.scand.a-16641

Abstract

Let $A$, $B$, $X$, and $A_{1},\dots,A_{2n}$ be bounded linear operators on a complex Hilbert space. It is shown that \[ w\Bigl(\sum_{k=1}^{2n-1}A_{k+1}^{\ast}XA_{k}+A_{1}^{\ast}XA_{2n}\Bigr) \leq 2\Bigl( \sum_{k=1}^{n}\Vert A_{2k-1}\Vert^{2}\Bigr)^{1/2}\Bigl(\sum_{k=1}^{n}\left\Vert A_{2k}\right\Vert^{2}\Bigr)^{1/2}w(X) \] and \[ w(AB\pm BA)\leq 2\sqrt{2}\,\Vert B\Vert \sqrt{w^{2}(A)-\frac{\vert \Vert {\operatorname{Re} A}\Vert^{2}-\Vert {\operatorname{Im} A}\Vert^{2}\vert}{2}}, \] where $w(\cdot)$ and $\left\Vert \cdot \right\Vert$ are the numerical radius and the usual operator norm, respectively. These inequalities generalize and refine some earlier results of Fong and Holbrook. Some applications of our results are given.

Downloads

Published

2014-01-17

How to Cite

Hirzallah, O., & Kittaneh, F. (2014). Numerical Radius Inequalities for Several Operators. MATHEMATICA SCANDINAVICA, 114(1), 110–119. https://doi.org/10.7146/math.scand.a-16641

Issue

Section

Articles