Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Spaces
DOI:
https://doi.org/10.7146/math.scand.a-20448Abstract
We study the Hardy-Littlewood maximal operator M on Lp(⋅)(X) when X is an unbounded (quasi)metric measure space, and p may be unbounded. We consider both the doubling and general measure case, and use two versions of the log-Hölder condition. As a special case we obtain the criterion for a boundedness of M on Lp(⋅)(Rn,μ) for arbitrary, possibly non-doubling, Radon measures.Downloads
Published
2015-03-04
How to Cite
Adamowicz, T., Harjulehto, P., & Hästö, P. (2015). Maximal Operator in Variable Exponent Lebesgue Spaces on Unbounded Quasimetric Measure Spaces. MATHEMATICA SCANDINAVICA, 116(1), 5–22. https://doi.org/10.7146/math.scand.a-20448
Issue
Section
Articles