Homeomorphisms of Finite Inner Distortion: Composition Operators on Zygmund-Sobolev and Lorentz-Sobolev Spaces

Authors

  • F. Farroni
  • R. Giova
  • G. Moscariello
  • R. Schiattarella

DOI:

https://doi.org/10.7146/math.scand.a-20450

Abstract

Let p>n1 and αR and suppose that f:ΩontoΩ is a homeomorphism in the Zygmund-Sobolev space WLplogαLloc(Ω,Rn). Define r=ppn+1. Assume that uWLrlogα(r1)Lloc(Ω). Then uf1BVloc(Ω). We obtain a similar result whenever f is a homeomorphism in the Lorentz-Sobolev space WLp,qloc(Ω,Rn) with p,q>n1 and uWLr,sloc(Ω) with r as before and s=qqn+1. Moreover, if we further assume that f has finite inner distortion we obtain in both cases uf1W1,1loc(Ω).

Downloads

Published

2015-03-04

How to Cite

Farroni, F., Giova, R., Moscariello, G., & Schiattarella, R. (2015). Homeomorphisms of Finite Inner Distortion: Composition Operators on Zygmund-Sobolev and Lorentz-Sobolev Spaces. MATHEMATICA SCANDINAVICA, 116(1), 34–52. https://doi.org/10.7146/math.scand.a-20450

Issue

Section

Articles