A Complex of Modules and Its Applications to Local Cohomology and Extension Functors
DOI:
https://doi.org/10.7146/math.scand.a-22240Abstract
Let $(R,m)$ be a commutative Noetherian complete local ring and let $M$ be a non-zero Cohen-Macaulay $R$-module of dimension $n$. It is shown that,
- if $\operatorname{projdim}_R(M)<\infty$, then $\operatorname{injdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$, and
- if $\operatorname{injdim}_R(M)<\infty$, then $\operatorname{projdim}_R(D(H^n_{\mathfrak{m}}(M)))<\infty$,
Also, it is shown that if $(R,\mathfrak{m})$ is a Noetherian complete local ring, $M$ is a non-zero finitely generated $R$-module and $x_1,\ldots,x_k$, $(k\geq 1)$, is an $M$-regular sequence, then \[ D(H^k_{(x_1,\ldots,x_k)}(D(H^k_{(x_1,\ldots,x_k)}(M))))\simeq M. \] In particular, $\operatorname{Ann} H^k_{(x_1,\ldots,x_k)}(M)=\operatorname{Ann} M$. Moreover, it is shown that if $R$ is a Noetherian ring, $M$ is a finitely generated $R$-module and $x_1,\ldots,x_k$ is an $M$-regular sequence, then \[ \operatorname{Ext}^{k+1}_R(R/(x_1,\ldots,x_k),M)=0. \]