Existence of Positive Solutions for a Class of Variable Exponent Elliptic Systems

Authors

  • S. Ala
  • G. A. Afrouzi

DOI:

https://doi.org/10.7146/math.scand.a-23298

Abstract

We consider the system of differential equations {Δp(x)u=λp(x)f(u,v)in Ω,Δq(x)v=μq(x)g(u,v)in Ω,u=v=0on Ω, where ΩRN is a bounded domain with C2 boundary Ω,1<p(x),q(x)C1(ˉΩ) are functions. Δp(x)u=div(|u|p(x)2u) is called p(x)-Laplacian. We discuss the existence of a positive solution via sub-super solutions.

Downloads

Published

2016-03-07

How to Cite

Ala, S., & Afrouzi, G. A. (2016). Existence of Positive Solutions for a Class of Variable Exponent Elliptic Systems. MATHEMATICA SCANDINAVICA, 118(1), 83–94. https://doi.org/10.7146/math.scand.a-23298

Issue

Section

Articles