Sur Le Produit Tensoriel D'algèbres

Authors

  • Mohamed Tabaâ

DOI:

https://doi.org/10.7146/math.scand.a-24181

Abstract

Let σ:AB and ρ:AC be two homomorphisms of noetherian rings such that BAC is a noetherian ring. We show that if σ is a regular (resp. complete intersection, resp. Gorenstein, resp. Cohen-Macaulay, resp. (Sn), resp. almost Cohen-Macaulay) homomorphism, so is σIC and the converse is true if ρ is faithfully flat. We deduce the transfer of the previous properties of B and C to BAC, and then to the completed tensor product BˆAC. If BAB is noetherian and σ is flat, we give a necessary and sufficient condition for BAB to be a regular ring.

Downloads

Published

2016-08-19

How to Cite

Tabaâ, M. (2016). Sur Le Produit Tensoriel D’algèbres. MATHEMATICA SCANDINAVICA, 119(1), 5–13. https://doi.org/10.7146/math.scand.a-24181

Issue

Section

Articles