Sur Le Produit Tensoriel D'algèbres
DOI:
https://doi.org/10.7146/math.scand.a-24181Abstract
Let σ:A→B and ρ:A→C be two homomorphisms of noetherian rings such that B⊗AC is a noetherian ring. We show that if σ is a regular (resp. complete intersection, resp. Gorenstein, resp. Cohen-Macaulay, resp. (Sn), resp. almost Cohen-Macaulay) homomorphism, so is σ⊗IC and the converse is true if ρ is faithfully flat. We deduce the transfer of the previous properties of B and C to B⊗AC, and then to the completed tensor product Bˆ⊗AC. If B⊗AB is noetherian and σ is flat, we give a necessary and sufficient condition for B⊗AB to be a regular ring.Downloads
Published
2016-08-19
How to Cite
Tabaâ, M. (2016). Sur Le Produit Tensoriel D’algèbres. MATHEMATICA SCANDINAVICA, 119(1), 5–13. https://doi.org/10.7146/math.scand.a-24181
Issue
Section
Articles