Application of localization to the multivariate moment problem II
DOI:
https://doi.org/10.7146/math.scand.a-25508Abstract
The paper is a sequel to the paper [5], Math. Scand. 115 (2014), 269--286, by the same author. A new criterion is presented for a PSD linear map $L \colon \mathbb{R}[\underline{x}] \to \mathbb{R}$ to correspond to a positive Borel measure on $\mathbb{R}^n$. The criterion is stronger than Nussbaum's criterion (Ark. Math. 6 (1965), 171--191) and is similar in nature to Schmüdgen's criterion in Marshall [5] and Schmüdgen, Ark. Math. 29 (1991), 277--284. It is also explained how the criterion allows one to understand the support of the associated measure in terms of the non-negativity of $L$ on a quadratic module of $\mathbb{R}[\underline{x}]$. This latter result extends a result of Lasserre, Trans. Amer. Math. Soc. 365 (2013), 2489--2504. The techniques employed are the same localization techniques employed already in Marshall (Cand. Math. Bull. 46 (2003), 400--418, and [5]), specifically one works in the localization of $\mathbb{R}[\underline{x}]$ at $p = \prod_{i=1}^n(1+x_i^2)$ or $p' = \prod_{i=1}^{n-1}(1+x_i^2)$.
References
Berg, C. and Christensen, J. P. R., Exposants critiques dans le problème des moments, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 661–663.
Fuglede, B., The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65.
Lasserre, J. B., The $mathrm K$-moment problem for continuous linear functionals, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2489–2504. http://dx.doi.org/10.1090/S0002-9947-2012-05701-1
Marshall, M., Approximating positive polynomials using sums of squares, Canad. Math. Bull. 46 (2003), no. 3, 400–418. http://dx.doi.org/10.4153/CMB-2003-041-9
Marshall, M., Application of localization to the multivariate moment problem, Math. Scand. 115 (2014), no. 2, 269–286. http://dx.doi.org/10.7146/math.scand.a-19225
Nussbaum, A. E., Quasi-analytic vectors, Ark. Mat. 6 (1965), 179–191.
Schmüdgen, K., On determinacy notion for the two-dimensional moment problem, Ark. Mat. 29 (1991), no. 2, 277–284. http://dx.doi.org/10.1007/BF02384342
Sodin, M., A note on the Hall-Mergelyan theme, Mat. Fiz. Anal. Geom. 3 (1996), no. 1-2, 164–168.