Automorphisms and examples of compact non-Kähler manifolds
DOI:
https://doi.org/10.7146/math.scand.a-25983Abstract
If $f$ is an automorphism of a compact simply connected Kähler manifold with trivial canonical bundle that fixes a Kähler class, then the order of $f$ is finite. We apply this well known result to construct compact non-Kähler manifolds. These manifolds contradict the abundance and Iitaka conjectures for complex manifolds.
References
Ballmann, W., Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006. https://doi.org/10.4171/025
Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782.
Cantat, S. and Oguiso, K., Birational automorphism groups and the movable cone theorem for Calabi-Yau manifolds of Wehler type via universal Coxeter groups, Amer. J. Math. 137 (2015), no. 4, 1013–1044. https://doi.org/10.1353/ajm.2015.0023
Demailly, J.-P., Analytic Methods in Algebraic Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/analmeth.pdf, 2009.
Fujiki, A., On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225–258. https://doi.org/10.1007/BF01403162
Lieberman, D. I., Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140--186.
McMullen, C. T., Dynamics on $K3$ surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. https://doi.org/10.1515/crll.2002.036
Oguiso, K., Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen, J. Differential Geom. 78 (2008), no. 1, 163–191.
Oguiso, K. and Schröer, S., Enriques manifolds, J. Reine Angew. Math. 661 (2011), 215–235. https://doi.org/10.1515/CRELLE.2011.077
Tosatti, V., Non-Kähler Calabi-Yau manifolds, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., vol. 644, Amer. Math. Soc., Providence, RI, 2015, pp. 261--277. https://doi.org/10.1090/conm/644/12770
Ueno, K., Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, vol. 439, Springer-Verlag, Berlin-New York, 1975.
Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. https://doi.org/10.1002/cpa.3160310304