Biduality and density in Lipschitz function spaces
DOI:
https://doi.org/10.7146/math.scand.a-25987Abstract
For pointed compact metric spaces (X,d), we address the biduality problem as to when the space of Lipschitz functions Lip0(X,d) is isometrically isomorphic to the bidual of the space of little Lipschitz functions lip0(X,d), and show that this is the case whenever the closed unit ball of lip0(X,d) is dense in the closed unit ball of Lip0(X,d) with respect to the topology of pointwise convergence. Then we apply our density criterion to prove in an alternative way the real version of a classical result which asserts that Lip0(X,dα) is isometrically isomorphic to lip0(X,dα)∗∗ for any α∈(0,1).
References
Bade, W. G., Curtis, Jr., P. C., and Dales, H. G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. https://doi.org/10.1093/plms/s3-55_2.359
Bierstedt, K. D. and Summers, W. H., Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70–79.
Brown, B. M., Elliott, D., and Paget, D. F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory 49 (1987), no. 2, 196–199. https://doi.org/10.1016/0021-9045(87)90087-6
Ciesielski, Z., On the isomorphisms of the spaces Halpha and m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217–222.
Godefroy, G. and Kalton, N. J., Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. https://doi.org/10.4064/sm159-1-6
Jiménez-Vargas, A., Sepulcre, J. M., and Villegas-Vallecillos, M., Lipschitz compact operators, J. Math. Anal. Appl. 415 (2014), no. 2, 889–901. https://doi.org/10.1016/j.jmaa.2014.02.012
Johnson, J. A., Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147–169. https://doi.org/10.2307/1995044
Kalton, N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217.
Katznelson, Y., An introduction to harmonic analysis, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9781139165372
de Leeuw, K., Banach spaces of Lipschitz functions, Studia Math. 21 (1961/1962), 55–66.
Weaver, N., Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. https://doi.org/10.1142/4100