A simple sufficient condition for triviality of obstructions in the orbifold construction for subfactors
DOI:
https://doi.org/10.7146/math.scand.a-26240Abstract
We present a simple sufficient condition for triviality of obstructions in the orbifold construction. As an application, we can show the existence of subfactors with principal graph $D_{2n}$ without full use of Ocneanu's paragroup theory.
References
Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. I, Comm. Math. Phys. 197 (1998), no. 2, 361–386. https://doi.org/10.1007/s002200050455
Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. II, Comm. Math. Phys. 200 (1999), no. 1, 57–103. https://doi.org/10.1007/s002200050523
Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. III, Comm. Math. Phys. 205 (1999), no. 1, 183–228. https://doi.org/10.1007/s002200050673
Böckenhauer, J., Evans, D. E., and Kawahigashi, Y., On α-induction, chiral generators and modular invariants for subfactors, Comm. Math. Phys. 208 (1999), no. 2, 429–487. https://doi.org/10.1007/s002200050765
Evans, D. E. and Gannon, T., Near-group fusion categories and their doubles, Adv. Math. 255 (2014), 586–640. https://doi.org/10.1016/j.aim.2013.12.014
Evans, D. E. and Kawahigashi, Y., Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), no. 3, 445–484.
Evans, D. E. and Kawahigashi, Y., Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998, Oxford Science Publications.
Goodman, F. M. and Wenzl, H., Littlewood-Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), no. 2, 244–265. https://doi.org/10.1016/0001-8708(90)90090-A
Goto, S., Orbifold construction for non-AFD subfactors, Internat. J. Math. 5 (1994), no. 5, 725–746. https://doi.org/10.1142/S0129167X9400036X
Goto, S., Symmetric flat connections, triviality of Loi's invariant and orbifold subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), no. 4, 609–624. https://doi.org/10.2977/prims/1195163917
Izumi, M., Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994. https://doi.org/10.2977/prims/1195169007
Izumi, M., Subalgebras of infinite $C^*$-algebras with finite Watatani indices. I. Cuntz algebras, Comm. Math. Phys. 155 (1993), no. 1, 157–182.
Izumi, M., Subalgebras of infinite $C^*$-algebras with finite Watatani indices. II. Cuntz-Krieger algebras, Duke Math. J. 91 (1998), no. 3, 409–461. https://doi.org/10.1215/S0012-7094-98-09118-9
Izumi, M., The structure of sectors associated with Longo-Rehren inclusions. I. General theory, Comm. Math. Phys. 213 (2000), no. 1, 127–179. https://doi.org/10.1007/s002200000234
Jones, V. F. R., Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. https://doi.org/10.1007/BF01389127
Kawahigashi, Y., On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors, J. Funct. Anal. 127 (1995), no. 1, 63–107. https://doi.org/10.1006/jfan.1995.1003
Kawahigashi, Y., Classification of approximately inner automorphisms of subfactors, Math. Ann. 308 (1997), no. 3, 425–438. https://doi.org/10.1007/s002080050083
Loi, P. H., On automorphisms of subfactors, J. Funct. Anal. 141 (1996), no. 2, 275–293. https://doi.org/10.1006/jfan.1996.0128
Masuda, T., Extension of automorphisms of a subfactor to the symmetric enveloping algebra, Internat. J. Math. 12 (2001), no. 6, 637–659. https://doi.org/10.1142/S0129167X01000988
Wenzl, H., Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. https://doi.org/10.1007/BF01404457
Xu, F., Orbifold construction in subfactors, Comm. Math. Phys. 166 (1994), no. 2, 237–253.
Xu, F., The flat part of non-flat orbifolds, Pacific J. Math. 172 (1996), no. 1, 299–306.
Xu, F., New braided endomorphisms from conformal inclusions, Comm. Math. Phys. 192 (1998), no. 2, 349–403. https://doi.org/10.1007/s002200050302