A weighted extremal function and equilibrium measure
DOI:
https://doi.org/10.7146/math.scand.a-26266Abstract
We find an explicit formula for the weighted extremal function of $\mathbb{R}^n\subset \mathbb{C}^n$ with weight $(1+x_1^2+\cdots +x_n^2)^{-1/2}$ as well as its Monge-Ampère measure. As a corollary, we compute the Alexander capacity of $\mathbb{RP}^n$.
References
Baran, M., Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in $bf R^n$, Michigan Math. J. 39 (1992), no. 3, 395–404. https://doi.org/10.1307/mmj/1029004594
Bedford, E. and Taylor, B. A., The complex equilibrium measure of a symmetric convex set in $bf R^n$, Trans. Amer. Math. Soc. 294 (1986), no. 2, 705–717. https://doi.org/10.2307/2000210
Bloom, T., Weighted polynomials and weighted pluripotential theory, Trans. Amer. Math. Soc. 361 (2009), no. 4, 2163–2179. https://doi.org/10.1090/S0002-9947-08-04607-2
Bloom, T. and Levenberg, N., Weighted pluripotential theory in $bf C^N$, Amer. J. Math. 125 (2003), no. 1, 57–103.
Bos, L., Levenberg, N., and Waldron, S., Pseudometrics, distances and multivariate polynomial inequalities, J. Approx. Theory 153 (2008), no. 1, 80–96. https://doi.org/10.1016/j.jat.2008.02.002
Burns, D., Levenberg, N., and Ma'u, S., Pluripotential theory for convex bodies in $bf R^N$, Math. Z. 250 (2005), no. 1, 91–111. https://doi.org/10.1007/s00209-004-0743-z
Burns, D., Levenberg, N., Ma'u, S., and Révész, S., Monge-Ampère measures for convex bodies and Bernstein-Markov type inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6325–6340. https://doi.org/10.1090/S0002-9947-2010-04892-5
Dinh, T.-C. and Sibony, N., Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258. https://doi.org/10.4171/CMH/50
Guedj, V. and Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607–639. https://doi.org/10.1007/BF02922247
Klimek, M., Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, Oxford, 1991.
Lundin, M., The extremal plurisubharmonic function for the complement of the disk in $mathbb R^2$, unpublished preprint, 1984.
Sadullaev, A., Estimates of polynomials on analytic sets, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 524–534, 671, English translation: Math. USSR Izvestiya 20 (1983), no. 3, 493–502.
Zelditch, S., Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I, in “Spectral geometry”, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 299--339. https://doi.org/10.1090/pspum/084/1363